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Abstract 

 

  The ability to infer goals , consequences of one’s own and others’ actions is a critical desirable feature 

for robots to truly become our companions-thereby opening up applications in several domains. This 

article proposes the viewpoint that the ability to remember our own past experiences based on present 

context enables us to infer future consequences of both our actions/goals and observed actions/goals of 

the other (by analogy). In this context, a biomimetic episodic memory architecture to encode diverse 

learning experiences of iCub humanoid is presented. The critical feature is that partial cues from the 

present environment like objects perceived or observed actions of a human triggers a recall of context 

relevant past experiences thereby enabling the robot to infer rewarding future states and engage in 

cooperative goal-oriented behaviors. An assembly task jointly done by human and the iCub humanoid 

is used to illustrate the framework.  Link between the proposed framework and emerging results from 

neurosciences related to shared cortical basis for ‘remembering, imagining and perspective taking’ is 

discussed. 
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1 Introduction 

From dining together to jointly assembling an IKEA table from constituent parts we are acting and 

anticipating consequences of potential actions, goals of both, oneself and the other. This seemingly 

effortless “real-time” inference of others actions/goals and prediction of ensuing future events enables 

us to both plan our actions accordingly or engage in cooperative goal oriented behaviors. Undoubtedly, 

as articulated in several recent robotics roadmaps [1, 2] this is a critical desirable feature for robots  

working alongside humans in unstructured environments - from industry to homes. Even today, most 

existing approaches in industrial manufacturing involving human robot coexistence is based on each 

agent performing isolated steps independently with minimal communication exchanged as necessary 
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[3]. In this context, recent advances in the design and availability of safe, compliant robots like Baxter, 

iCub humanoid, Kuka LBR, Universal Robots is gradually enabling humans and robots to share 

workspaces. This opens up the scope for “joint-goal” human robot scenarios- where both agents 

act/perceive/plan collaboratively in a continuously evolving unstructured environment (as a simple 

example, assembling something from constituent parts). Given that, successful collab oration with 

another agent in a joint goal task requires a complex integration of multiple subsystems like perception, 

action, goal directed reasoning, we are only beginning to scratch the surface of understanding the 

computational basis of social intelligence in autonomous robots (see [4] for recent reviews).   

   This article is an exploration into this topic with the working hypothesis that the ability to 

remember our own past experiences based on present context enables us to infer future consequences 

of both our actions/goals and observed actions/goals of the other (by analogy). Emerging trends from 

neurosciences importantly the discovery of the Default Mode Network (DMN) in the brain [5] is 

providing converging evidence in this direction.  In particular, studies on DMN indicate that there is an 

extensive overlap in cortical networks activated while remembering the past and those engaged during 

simulation of the future and adopting the perspective of the other [6-7]. At the core of DMN are the 

brain areas in the Medial Temporal Lobe known to be involved in episodic memory. Disruption to the 

DMN also indicates suppressed social behavior as observed in cognitive disorders like ASD [7]. 

 In the context of cognitive robotics and from a computational/functional perspective, presently there 

is consensus that the central function of DMN is to generate self-referential episodic simulations- that 

include recall of past experiences, prediction of potential future states  and inferring the perspective of 

the other. Given the trends in neuroscience of memory, computational modelling and implementation  

of biomimetic robot episodic memory has been a topic of emerging interest in cognitive robotics ([8-9] 

see, Vernon, Beetz and Sandini, 2015 for a review). Robot episodic memory systems have been 

instantiated both sub-symbolically using ANNs and symbolically using content-addressable image 

databases with traditional image indexing and recall algorithms. Importantly, unlike in synthetic systems 

where memory is usually treated as a passive storage device, this viewpoint looks at memory as an active 

process involved in forward simulation and presepctive taking.  

  In this context, we present a growing, multimodal episodic memory framework to encode diverse 

experiences of the robot acquired cumulatively by interacting with the environment. The central idea is 

that the episodic memory network is activated autonomously based on diverse partial cues emerging  

from the environment mainly- a) vision-objects perceived in the present scene; b) linguistic words, for 

example  the word “red ball”  or “assemble fuse box”; c) Actions performed by a human counterpart.  

Partial cues trigger the retrieval dynamics enabling the robot to recall its own past experiences in relation 

to the present context. We then demonstrate how context specific recall of past episodic experiences 

based on observation of the actions of a human counterpart enables the robot to simulate future states 

and engage in cooperative goal directed behaviours. A playful scenario where the robot learns 

cumulatively through multiple experiences to assemble the tallest possible tower with random object’s 

and then exploits such knowledge to co-operate with the human to jointly assemble the tallest tower is 

used to illustrate the results. In sum, the architecture offers shared computational basis for 

“remembering, imagining and perspective taking” in cognitive robots. As a side effect, s ince such 

episodic memories are derived from direct experiences (of the robot), also finesses the symbol grounding 

problem [10]. 

The rest of the article is organized as follows. Section 2 describes the central building blocks related 

to perception, action, robot episodic memory system in the proposed framework. An example iCub 

humanoid robot learning to assemble a tower suing different objects presented randomly, the ensuing 

representation in the episodic memory network, the encoding and retrieval dynamics is presented to 

illustrate the computational model. Section 3 presents results where the iCub humanoid exploits its past 

experiences to creatively collaborate with a human counterpart assembling a tower. A discussion 

concludes. 



 

 

2 From Remembering to Inferring –Central Building blocks 

This section describes the main building blocks in the proposed framework for joint goal human 

robot collaboration (figure 1), developed within the framework of EU funded Darwin project . While the 

perception-action related building blocks are described only briefly to provide context, the episodic 

memory storage/retrieval module is described to a greater level of detail. 
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A. Perception-Action Loop- Any action executed by the robot or human in the context of the joint 

“tower assembly” task constantly changes the scene in the environment. The real time operation 

and accuracy of the perception-action system is critical for smooth functioning of the system. 

The perception module consists of several subsystems to detect a) What - objects are present in 

the scene through shape analysis  based on chamfer matching combined with the sliding window 

technique [6]; b) Where-3D localization of the objects through stereo vision- that both provides 

spatial coordinates for reach/grasp actions  and additional information about relative alignment  

of the objects (example- block1 is on top of block 2); c) Scene change and Human action 

detection-when objects in the scene are displaced, not by the robot based on proprioceptive 

feedback) and recognition of human hand. The action system is based on the Passive Motion 

Paradigm framework that coordinates the upper body of iCub humanoid (left arm-torso-right  

arm chain) for reaching, grasping actions [12].  Further details of the organization of Perception-

Action loop in  Darwin Architecture can be found in [8]. In sum, the perception-action system 

both enables the robot to learn by interacting and serves as inputs to the episodic memory system 

to remember, infer and plan potentially rewarding goal directed actions. 

B. Episodic memory system- The episodic memory network stores multiple experiences of the 

robot learnt cumulatively by interacting with the environment. While in this specific case we 

are dealing with the task of assembling a tower with available objects, the memory by itself is 

task agnostic and store diverse experiences of the robot like learning to push, assembly tasks 

[13]. The episodic memory network is based on auto-associative neural network [14, 8] and 

consists of 1000 neurons characterized by “all to all” connections and organized in a sheet like 

structure with 20 rows each containing 50 neurons  (figure 2a). Every row may be thought as an 

event in time in our case- object recognized, action executed, action recognized, received reward. The 

complete structure forms an episode of experience. For example, picking up a color tower and placing it 

on the meccano block: form episodic memory 1. Multiple experiences can be stored into the same network 



 

 

by updating the weights T ij between the neurons using Hebbian learning [8]. A the same time partial cues 

from the environment- like objects recognized, actions recognized can trigger recall of past experiences 
using the retrieval dynamics described by equation 1- where Vi is the activity in ith neuron, T ij the weight, 

Iinhib threshold []. The central idea is that such recall of past experiences also enables the robot to infer 

future rewarding states and thereby engage in joint goal behavior. In other words, our own experiences  

recalled from memory enables us to infer others actions/goals. To gain experience the robot interacts 

cumulatively with multiple objects like color tower, red block, meccano block, mushroom and assembling 

the tallest possible tower suing them (figure 2) as will be described in the next section. 

 

 

                                                         (1) 

Figure 2. Shows examples of the robot cumulatively gaining experience of assembling the tallest tower 

by interacting with available objects. Such experiences are encoded into the episodic memory - a fully 

connected network of 1000 neurons organized in the form of a 20x50 sheet. Every row may be thought 

as an event in time in our case- object recognized, action executed, action recognized, received reward. 
For example, picking up a color tower and placing it on the meccano block: form episodic memory 1 

(EM1). Multiple experiences (max-230) can be stored in the same auto associative memory. 

3 Stacking up a Tower with a Human Counterpart 

Akin to experimental tasks in the developmental psychology literature, we choose a playful task of 

building a tower of objects to test our model. In the first experience (EM1), the robot is presented with 

two objects, a Meccano Block and a Color Tower (figure 2) and is issued a user goal “Stack”. This user-

goal and the two objects perceived act as partial cues to trigger recall of any past experiences. However, 

in the beginning there are no learnt/past experience, nothing is recalled. With only option to explore, the 

robot picks randomly the Color Tower to stack on the Meccano Block and does so successfully to get a 

reward (equal to the number of the objects stacked successfully). The robot encodes this experience in 

the episodic memory for future recall. In a similar next experience (EM2), the robot stacks two objects, 

a Mushroom on a Color Tower and this experience is again encoded into memory. In the present case, 

9 different experiences with different combinations of objects randomly presented were acquired and 

stored in the auto associative episodic memory network.   



 

 

 
 

Figure 3: Panel A,B show results of perceptual analysis, through which objects and actions are recognized which 

act as partial cues. After observing objects and user-action (panel A-C), the robot recalls episodes EM1(panel D) & 

EM2 (panel E), merges them to infer that it has to continue stacking; forms a plan for stacking (panel F) and executes  

it (panel G). 
 

 In the final stage of the task, three objects i.e. Meccano Block and Color Tower and the Mushroom 

are available in the scene. No linguistic user-goal is provided. However, the system observes the user 

stacking the Color Tower over the Meccano Block . Hence, the observed user-action of stacking and the 

objects present in the scene now serve as partial cues to recall the past-experiences that involved 

performing the same action. As seen in figure 3, the robot recalls two different experiences (EM1 & 

EM2). Finding a common object i.e. the Color Tower between the two experiences, the system combines 

the two episodic memories together to generate a novel plan (that it would execute if it were to build the 

tower). Note that, the generated plan from past experiences also directly leads to the inference of the 

rewarding future state i.e. placing the mushroom on top of the partially assembled tower in the scene. 

The robot now executes its own action of stacking the mushroom on top of the color tower, thus jointly 

completing the assembly with the human. 



 

 

4 Discussion 
While there is converging evidence from neurosciences that cortical areas involved in remembering  

the past are also engaged in simulating the future and adopting the perspective of the other, the 

underlying computational basis is blurred. This article presented a biomimetic framework where recalled 

episodic memories of the robot enable it to simulate future rewarding states an d collaborate with the 

human counterpart to jointly assemble a tower. The central idea is that we reuse our own episodic 

experiences to infer others actions, consequences of such actions. This critically both enables us to 

cooperate in joint goals or plan our own future actions based on the present environment. This is a highly 

desirable feature for future robot companions inhabiting natural living spaces -industrial manufacturing, 

homes and offices, elderly care to mention a few. While in the preliminary experiment we only 

considered one joint goal (i.e. assembly of the tower with available objects), work is ongoing to infer 

multiple possible goals. This is interesting given that different actions with the same object can lead to 

realization of different user goals. For example, if the human put the color tower into a bin, the goal is 

to clean up the table, but if he placed it on top of a block the goal could be to build a tower. Further, 

more complex joint assembly scenarios with the human and humanoid involving more complex actions 

(like use of tools) will be explored in the future. 
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