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Abstract. The performance of the human brain depends on how effectively its 

distinct regions communicate, especially the regions which are more strongly 

connected to each other than to other regions, or so called “rich-clubs”. The aim 

of the current work is to find a connectivity pattern between the three brain 

rich-club regions without any a priori assumptions on the underlying network 

architecture. Rich-clubs for the analysis were previously identified with struc-

tural MRI. Functional magnetic resonance imaging (fMRI) data from 25 

healthy subjects (1000 time points from each one) was acquired and Transfer 

Entropy (TE) between fMRI time-series from rich-clubs was calculated. The 

significant results at the group level were obtained by testing against the surro-

gate data generated on a novel approach. We found stable causal interactions 

between rostral Anterior Cingulate Cortex L and Dorsal Anterior Cingulate 

Cortex L, dorsal Anterior Cingulate Cortex L and Paracentral Lobule R but not 

vice versa. Our work provides an approach to causal analysis of experimental 

data and demonstrates the applicability to real fMRI study. 
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1 Introduction 

Some studies have shown the existence of highly interconnected regions 

(hubs), that play a key role in global information integration between different parts 

of the brain [1]. These regions are of critical importance due to their role as integrator 

which was demonstrated in studies on patients with damaged links between rich-clubs 

[2]. This study aims at finding a causal pattern between three previously defined 

(Kartashov et al., in press) rich-clubs based on Transfer Entropy (TE) as well as pro-

vides a possible significance test of obtained TE values.  

Many researchers explore the connectivity between rich-clubs in terms of 

statistical dependencies between spontaneous activities in them (i.e. functional con-

nectivity). These dependencies do not show anything about causal effect one neural 



system exerts over another. To be able to reproduce biological principles of the brain 

in artificial systems we need to know this functional architecture in terms of effective 

connectivity. There are two main groups of methods proposed to measure effective 

connectivity for fMRI study. One group consists of model-based approaches like 

DCM (Dynamic Causal Modelling) [3]. Previously its application to resting-state 

fMRI was demonstrated [4–6]. Another group consists of methods with no prior as-

sumptions or hypotheses on the brain structures interaction. One of these methods 

taken from information theory is called Transfer Entropy (TE). TE was first introduc-

tion by Schreiber [7] and has been recognized as a powerful tool to detect the transfer 

of information between joint processes. The most appealing features of TE are that it 

has a solid foundation in information theory and it naturally detects directional and 

dynamical information transfer. TE has been previously applied to assess interactions 

between brain networks (but not rich-clubs) [8,9]. One of the novelties of the current 

work is a proposed procedure of generating surrogates and formulating a null hypoth-

esis for significance testing. 

2 Materials and Methods 

2.1 Transfer Entropy  

In 1956 Norbert Wiener proposed the definition of causality: an improve-

ment of the prediction of the future of a time series X by the incorporation of infor-

mation from the past of a second time series Y is an indication of a causal interaction 

from Y to X. In 2000 Schreiber proposed [7] a new information theoretic measure – 

Transfer Entropy (TE), which is a non-parametric statistic measure of the amount of 

directed (time-asymmetric) information transfer between two or more random pro-

cesses, for details see [9]. 

2.2 Subjects 

MRI data were obtained from 25 healthy subjects, mean age 24 (range from 

20 to 35 years). Consent from each participant was provided. The participants were 

instructed to close their eyes and lie still and relaxed. Each participant was asked 

about wakefulness during the study; those who fell asleep in scanner were excluded 

from the study. Permission to undertake this experiment has been granted by the Eth-

ics Committee of the NRC "Kurchatov Institute". 1000 time points (with a repetition 

time of 2 s) were acquired resulting in approx. 35 min. of scanning. 

2.3 Scanning parameters  

MRI data were acquired using a SIEMENS Magnetom Verio 3 Tesla. The 

T1- weighted sagittal three-dimensional magnetization-prepared rapid gradient echo 

sequence was acquired with the following imaging parameters: 176 slices, TR = 1900 

ms, TE = 2.19 ms, slice thickness = 1 mm, flip angle = 9°, inversion time = 900 ms, 

and FOV = 250 × 218 mm
2
. fMRI data were acquired with the following parameters: 

30 slices, TR = 2000 ms, TE = 25 ms, slice thickness = 3 mm, flip angle = 90°, and 

FOV = 192 × 192 mm
2
. Also the data which contain the options for reducing the spa-

tial distortion of EPI images was received. 



2.4 Preprocessing and TE calculation 

fMRI and anatomical data were preprocessed using SPM8 (available free at 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) based on Matlab. Preprocessing 

included the following steps: adduction the center of anatomical and functional data 

to the anterior commissure, correction for magnetic inhomogeneity using field map-

ping protocol. Slice-timing correction for fMRI data was performed (the correction of 

hemodynamic response in space and then in time to avoid pronounced motion arti-

facts) [10]. Anatomical data were segmented into 3 possible tissues (grey matter, 

white matter, cerebro-spinal fluid); both anatomical and functional data were normal-

ized.  

Rich-club regions were previously identified by DTI from the same 25 participants 

(Kartashov et al., in press). The three main regions are: Rostral Cingulate Cortex L 

(ACC) [-4 35.5 14], Dorsal Cingulate Cortex L (ACC) [-5.5 -15 41.5], Paracetral 

Lobule R [7.5 -31.5 68]. In square brackets there are corresponding MNI coordinates 

of regions centers of masses, see Fig.1 for spatial localization. We used the SPM 

toolbox—WFU pickatlas (available free at 

http://uvasocialneuroscience.com/doku.php?id=uva_socia:wfu_pickatlas) to create a mask 

for the three main regions. 

 

a)Rostral ACC  b)Dorsal ACC  c)Paracentral_Lobule 

Fig. 1. Spatial localization of chosen regions of interest, superimposed on the T1-

weigthted MNI template. 

 

After preprocessing, fMRI time series from three regions of interest (ROIs) 

were extracted and additionally preprocessed to remove physiological artifacts (heart-

beat and breathing) in 3 different ways: 1) linear detrending 2) squared detrending 3) 

calculating and subtracting the envelope curve for the signal. In addition, we analyzed 

the raw fMRI signal to understand whether physiological noise could lead to TE val-

ues miscalculation. After all preprocessing was done, averaged signal intensities from 

each ROI were taken for further analysis. 

TE values for each pair of rich-clubs were then calculated using non-uniform 

embedding and nearest-neighbor estimator, see [9] for details. For nearest neighbor 

estimation pre-compiled .mex files were used from OpenTSTOOL 

(http://www.dpi.physik.uni-goettingen.de/tstool/link.html).  

http://www.dpi.physik.uni-goettingen.de/tstool/link.html


2.5 Group-level significance testing 

By definition, TE values can be exactly zero only when no time-series vector 

candidates are found in non-uniform embedding procedure for TE calculation. In all 

other cases TE values are strictly positive, which leads to a problem of null-

hypothesis formulation at the group level: all mean TE values in a group are positive 

(and zero only when for all participants there are no significant candidates). This 

means that surrogate data is needed to form differences between real and surrogate TE 

values. This surrogate data cannot be obtained by random permutations of fMRI time-

series values due to complex structure of fMRI data with correlations and autocorrela-

tions.   To account for these dependencies, surrogate data was constructed in the fol-

lowing way: for each subjects its real data (1000 time points for each ROI) were split 

into 10 blocks of 100 time points and these blocks were shuffled 100 times to produce 

100 synthetic data sets. This procedure generates data which: 1) has no causal rela-

tions 2) has the same first and second order statistical moments as the source data. For 

these datasets TE values were recalculated forming a null-distribution of TE values 

(for each subject and for each ROI to ROI interaction). Thus the null-hypothesis of no 

causality is: the median of TE values differences between real and surrogate data is 

equal to zero, which leads to Wilcoxon signed-rank test to reject this hypothesis. As 

we have multiple comparisons (3 rich clubs and 6 possible connections), Bonferroni 

correction should be done. 

3 Results 

After group analysis, the following results were obtained, see Fig.2.

Fig. 2. Matrices of causal connections between rich-club regions. Left to right: calculated from 

a) raw data, b) envelope curve removing, c) linear detrending, d) squared detrending. In rows 

there are source regions, in columns – target regions. 1 – rostral ACC, 2 – dorsal ACC, 3 - 

Paracentral Lobule   Group-level significant results are shown (p<0.01, Bonferroni corrected). 

TE values scale in bites is shown on the right. 

In general, all preprocessing types showed similar result at the group level, 

unlike the raw fMRI data. This could mean that there is a lot of false correlations (and 

autocorrelations) in raw data due to physiological and equipment noise, which were 

thoroughly studied before [11,12]. The presence of such correlations leads to overes-

timation of TE values, which is in agreement with our simulation results.  

There are significant information flows between Rostral ACC and Dorsal 

ACC; Dorsal ACC and Paracentral Lobule R, but not vice versa. When applying line-

ar and square detrending, there is also a significant directed connection from Paracen-



tral Lobule R to Dorsal ACC. It is worth mentioning that these connections are signif-

icant (at single-subject level) in most subjects, which can be another proof of the reli-

ability of proposed testing procedure. 

4 Disscussion 

In the current work we aimed at assessing causal interactions between the 

three rich-club regions: Rostral ACC, Dorsal ACC, Paracentral Lobule R without any 

underlying assumptions, as well as to propose a possible approach of significance 

testing at the group level. These rich-club regions were taken from the other work 

(Kartashov et al., in press), but all structural and functional data was available for the 

current analysis. Three different types of preprocessing were applied to account for 

physiological and scanner noise. The final result for all preprocessing types is almost 

the same: at the group level the difference is in one connection, which is significant 

for linear and square detrending procedures, and non-significant for envelope curve 

removing.  

There are different approaches of generating surrogate data for significance 

testing ranging from simple values randomization to epochs shuffling in EEG experi-

ment [13]. The structure of EEG data (each trial is a couple of seconds epoch with 

hundreds of time-points) allows for epoch shuffling, while in fMRI we have only one 

time point per trial due to poor temporal resolution. Thus, in order to capture statisti-

cal dependencies in experimental data we need to shuffle blocks not too small to keep 

correlational structure in data and not too big to get rid of existing causal relations 

between time-series. Here we propose shuffling blocks of 100 samples to be enough 

to satisfy both of these requirements.  

Our study show the direct effect one neuronal system exerts over another 

when subject is at rest, not performing any task (basic level of consciousness). The 

regions responsible for control functions of the brain, multi-tasking, emotional eval-

uation, detecting errors and decision making (rostral and dorsal ACC) have an influ-

ence on areas controlling motor and sensory innervations (Paracentral Lobule R). The 

observed data also show the influence from rostral ACC (emotional component) on 

dorsal ACC (cognitive component), which in turn influences the sensorimotor regions 

(Paracentral Lobule R). 

5 Acknowledgments   

This work was partially supported by the MEPhI Academic Excellence Pro-

ject (Contract No. 02.a03.21.0005) (Mathematical basics of effective connectivity 

during a resting-state), by RFBR OFIm project 15-29-01344 (Analysis of wave-like 

processes in the human brain), by the Russian Science Foundation, grant RScF project 

№ 15-11-30014 (Data preprocessing algorithms), by the Competitiveness Program of 

NRNU “MEPhI” (M.H.U.) (Algorithms of rich-club structure identification). 



6 References 

1. M.P. van den Heuvel, O. Sporns. Rich-club organization of the human connectome. J 

Neurosci.2011 31(44):15775-86. 

2. M.P. van den Heuvel, O. Sporns, G. Collin, T. Scheewe, R.C. Mandl, W. Cahn, J. Goni, 

H.E. Hulshoff Pol, R.S. Kahn. Abnormal rich club organization and functional brain dy-

namics in schizophrenia. JAMA Psychiatry 2013 70:783–792 

3. K.J. Friston, L. Harrison, W. Penny. Dynamic causal modelling. Neuroimage 2003 

19(4):1273-302. 

4. K.J. Friston, J. Kahan, B. Biswal, A. Razi. A DCM for resting state fMRI. Neuroimage 

2014 94:396-407. 

5. M. Sharaev, V. Zavyalova, V.L. Ushakov, S.I. Kartashov, B.M. Velichkovsky. Effective 

Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-

State fMRI Data. Front Hum Neurosci.2016 10:14. 

6. V. Ushakov, M.G. Sharaev, S.I. Kartashov, V. V. Zavyalova, V.M. Verkhlyutov, B.M. 

Velichkovsky. Dynamic Causal Modeling of Hippocampal Links within the Human De-

fault Mode Network: Lateralization and Computational Stability of Effective Connections. 

Front Hum Neurosci. 2016 10:528. 

7. T. Schreiber. Measuring Information Transfer. Phys. Rev. 2000 85:461. 

8. I. Dieza, A. Erramuzpea, B. Mateosa, A. Cabrerac, E.J. Sanz-arigitae, S. Stramagliaf, J.M. 

Cortesa. Information flow between resting state networks. 6000 (2015) 1–11. 

9. M. Sharaev, V. Ushakov, B. Velichkovsky. (2016) Causal Interactions Within the Default 

Mode Network as Revealed by Low-Frequency Brain Fluctuations and Information Trans-

fer Entropy. In: Samsonovich A., Klimov V., Rybina G. (eds) Biologically Inspired Cogni-

tive Architectures (BICA) for Young Scientists. Advances in Intelligent Systems and 

Computing, 2016 449. 

10. R. Sladky, K.J. Friston, J. Tröstl, R. Cunnington, E. Moser, C. Windischberger. Neu-

roimage 58 (2), 588-594 

11. M.W. Woolrich, B.D. Ripley, M. Brady, S.M. Smith. Temporal autocorrelation in uni-

variate linear modeling of FMRI data. Neuroimage 2001 14(6):1370-86. 

12. J.A. De Zwart, P. Van Gelderen, M. Fukunaga, J.H. Duyn. Reducing correlated noise in 

fMRI data. Magn. Reson. Med 2008 59:939–945. 

13. R. Vicente, M. Wibral, M. Lindner, G. Pipa. Transfer entropy--a model-free measure of 

effective connectivity for the neurosciences. J Comput Neurosci. 2011 30(1):45-67. 

https://www.ncbi.nlm.nih.gov/pubmed/22049421
https://www.ncbi.nlm.nih.gov/pubmed/22049421
http://jamanetwork.com/journals/jamapsychiatry/fullarticle/1695592?tab=cme
http://jamanetwork.com/journals/jamapsychiatry/fullarticle/1695592?tab=cme
https://www.ncbi.nlm.nih.gov/pubmed/12948688
https://www.ncbi.nlm.nih.gov/pubmed/24345387
https://www.ncbi.nlm.nih.gov/pubmed/26869900
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078141/
https://www.ncbi.nlm.nih.gov/pubmed/11707093
https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwi4uNfzgaHTAhWjBZoKHQETDNAQFggwMAM&url=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fmrm.21507%2Fpdf&usg=AFQjCNEjkPQ8wwaERQ7i3VceB5vsm25W6Q&sig2=gXHyR-r-jMNpH4tvpWTS1A&bvm=bv.152180690,d.bGs
https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwi4uNfzgaHTAhWjBZoKHQETDNAQFggwMAM&url=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fmrm.21507%2Fpdf&usg=AFQjCNEjkPQ8wwaERQ7i3VceB5vsm25W6Q&sig2=gXHyR-r-jMNpH4tvpWTS1A&bvm=bv.152180690,d.bGs
https://www.ncbi.nlm.nih.gov/pubmed/20706781

